
27th Telecommunications forum TELFOR 2019 Serbia, Belgrade, November 26-27, 2019.

978-1-7281-4790-1/19/$31.00 ©2019 IEEE

Abstract — Suricata is a high-performance, multi-threaded

Network IDS, IPS and Network Security Monitoring engine

that can monitor networks in real time to protect against

attacks. With its diverse features, Suricata is the choice of

modern Unified Threat Management (UTM) systems to help

networks secure their boundaries. As the network capacity

increases to 40Gbps and beyond, it becomes important to

tune Suricata to provide a lossless detection to the network.

This paper describes the different tunings that were done to

Red Piranha’s Crystal Eye appliances to achieve 60Gbps

Suricata throughput. Suricata throughput, as described in

this paper, defines the amount of data that can be handled by

Suricata engine without any drops. We describe the

hardware configurations as well as the Suricata

configurations that can help achieve high detection rates. We

have also added the test results for single NIC and dual NIC

systems and discussed the impact of hardware on Suricata

performance.

Keywords — Data Rates, Intrusion Detection System,

multithreading, Suricata, Traffic.

I. INTRODUCTION

MPROVEMENT of the data processing rates of the modern

hardware firewalls is more than needed nowadays.

Network Intrusion Detections Systems (NIDs) are

important part of the hardware firewalls for detection of

malicious activities within the networks. NIDs are facing

great challenges with rapid increasement of the network

speeds when monitoring large and diverse traffic volumes.

Suricata is a popular open-source, multi-threaded, high-

performance NIDS that is researched in many scientific

papers. In [1] authors compare Suricata with Snort and Bro

as most popular open source NIDSs. Comparison in [1] is

done in packet processing speed, system resource usage

and packet drop rate. Snort and Suricata are evaluated in

[2] using hardware network testing setup to ensure a

realistic environment where focus is put on the accuracy of

the detection especially dependent on bandwidth.

 In [3] authors installed Suricata and Snort on two

different but identical computers and it was noted that

The work on which this paper reports is supported by the team of Red

Piranha Limited, Australia. We thank Adam Bennett for permission to
publish this material.

K. Jakimoski is with the Faculty of Informatics, FON University, Bul.

Kiro Gligorov 5, 1000 Skopje, Republic of North Macedonia; (e-mail:

kire.jakimoski@fon.edu.mk).
N.V. Singhai is with the Red Piranha Limited, Australia (e-mail:

nidhi@redpiranha.net).
 978-1-7281-4790-1/19/$31.00 ©2019 IEEE

Suricata could process higher data rates of network traffic

than Snort with lower packet drop rate with consuming

higher computational resources.

 Results in [4] showed that Suricata drops fewer packets

compared to Bro and Snort successively when a DDoS

attack is happening and detect more malicious packets.

 Authors in [5] are studying the three most popular NIDS

tools, Suricata, Snort and Bro. Processing and detection

rate of Suricata and Snort are analyzed and compared in

[6] in order to decide which is better in single threading or

multi-threading environment.

 Authors in [7] found out that the deep packet inspection

based on many-core platform can process network traffic

of which the bandwidth reaches up to 4 Gbps.

Red Piranha’s Crystal Eye UTM appliances [8] are

multi-core systems that enable multi-threaded applications

to use the underlying hardware for high performance.

Multi-threading scales the system by adding more threads

for running different applications that inspect the incoming

traffic before transmitting it to/from the protected network.

 Crystal Eye uses Suricata as its Intrusion Detection and

Protection Engine. The IDPS solution of Crystal Eye can

be used in IDS, IPS or NSM mode. As the range of UTM

products increase in their capacity to handle higher traffic

speeds, it becomes important to tune Suricata to provide a

lossless detection to the network.

Crystal Eye Series-80 is a high-end appliance that is

suitable for telecoms or large IT needs. This paper

provides details about Suricata tuning efforts for this

appliance.

The remainder of this paper is organized as follows:

Section 2 explains test setup details. Important

considerations are mentioned in Section 3. Section 4

describes traffic tests and traffic profile. Test phase 1 is

described in Section 5. Test results of the test phase 1 are

presented in the Section 6. Section 7 is describing test

phase 2 and Section 8 present test results of the test phase

2. Finally, Section 9 concludes the paper.

II. TEST SETUP

The technical specifications of the Crystal Eye

appliance used for the tests have taken [10] Septun Mark I

as reference. Hardware setup is described below:

Improvement of Hardware Firewall’s Data

Rates by Optimizing Suricata Performances

Kire Jakimoski, Faculty of Informatics, FON University – Skopje, Republic of North Macedonia,

Nidhi V Singhai, Red Piranha Limited – Australia

I

- Dual Intel® Xeon® CPU E5-2697 v4. This is an 18

core HT system. Total number of threads in the

system with Dual CPU was 72.

- 2 x Dual port XL710 40 GbE NICs. Only 1 port from

each NIC was used.

- 128 GB RAM, 8 DIMMS, 4 per socket

- OS: Ubuntu 18.04.2 LTS (Bionic Beaver), Kernel:

4.18.0-20-generic

- Latest Suricata (5.0.0 dev) from git

- Latest i40e driver from Intel (v2.9.21).

III. TUNING CONSIDERATIONS

Suricata’s performance in our setup was dependent upon

below factors:

- HW capability and capacity

This is the most important factor in Suricata’s

performance. We used the cards that supported

multi-queue feature to hash the incoming traffic to

multiple receive queues. Hardware considerations

have been discussed in detail below.

- Suricata version

Latest Suricata version includes performance

improvements and security fixes. Thus, we picked

the latest from git.

- Rules

Suricata scans the rules in-order to perform

inspections. Hence the number of rules plays an

important part in the performance. In our case, we

have used 14350 signatures from Emerging Threats

ruleset.

- BIOS Settings

While most of the tests with default BIOS settings

gave us expected results, we noticed that for speeds

higher than 50Gbps, BIOS tunings were needed.

We followed the suggestions in [10] Septun Mark I

for our motherboard and made the settings as below

- Disable ASPM

- Disable VT-d

- Disable SR-IOV (already disabled in our

case)

- Disable hardware prefetcher

- Disable adjacent sector prefetcher

- Disable DCU stream prefetcher

- Traffic type

While traffic is not a tunable parameter, we have

added it here since we saw higher throughput rates

with simple http flows. We experimented with

different traffic profiles in our tests and have

mentioned the profile that simulated the enterprise

traffic fully in this paper.

Most of the tunings in the tests were done to make sure

that the packet is read from the L3 cache in order to

minimize the time that is required to fetch the data.

Several important considerations in this regard are:

- Single port of each XL710 card was used. These

cards come with dual ports where the second port

has been reserved for redundancy.

- NICs on different NUMA (Non-Uniform Memory

Access) nodes were used. The Crystal Eye

appliance used in the tests had 2 NUMA nodes.

Interfaces were identified on the different NUMA

nodes and used for testing. In our setup, each

NUMA node was attached to 36 cores.

- Interface receive and transmit queues were pinned to

the cores that were local to the NUMA node for the

interface. Symmetric hashing was used to evenly

distribute the traffic among these queues.

- Suricata was run in worker mode and worker threads

for each interface were pinned to the cores local to

the NUMA node for the interface. This ensured that

the packet was read from the local L3 cache and

avoided NUMA interleaving while reading packets

by Suricata.

- Memcap values in the Suricata config file were

adjusted to handle high traffic load. These values

were adjusted keeping in mind the available

memory and the memory consumption of Suricata

as described by Peter Manev in his blog [9].

- Interface buffers and interrupts were adjusted in order

to minimize losses at the NIC and Suricata.

NIC offloading was disabled and Network balancing

was enabled for the interfaces.

IV. TRAFFIC TESTS AND TRAFFIC PROFILE

Traffic testing for the setup was performed in two

phases. In the first phase, single NIC card was used for

testing. A maximum of 34.5 Gbps Suricata throughput was

obtained in this case. In the second phase, we tested with

two NIC cards located on different NUMA nodes. With

proper tuning, we were able to achieve a maximum of 60

Gbps Suricata throughput in this case.

Trex traffic generator was used to generate stateful

traffic for our setup. Trex uses traffic profiles to replay

traffic in the system. Traffic profiles use pcaps to generate

the connections at the defined rates in the profiles. In our

case, client was running on the Trex and the Crystal Eye

appliance acted as the receiver of the traffic. Such a profile

is mostly used in IDS mode

Fig. 1. Test Setup

Our traffic profile can be roughly described as:

HTTP/HTTPS traffic: 77.49%

RTP: 13.23%

Exchange: 4.31%

Citrix: 2.15%

SMTP: 1.08%

DNS: 1.08%

Oracle: 0.65%

Total: 100%

V. TEST PHASE 1 (SINGLE NIC)

In this test, we passed traffic from Trex to only one

interface in Crystal Eye appliance. Interrupts for this

interface were pinned to 34 cores belonging to the NUMA

node that was local to the interface, leaving the 2 cores for

housekeepin. We used a low entropy key to enable

Receive Side Scaling (RSS) hashing to these cores.

We used the linux ethtool utility to set the interface

parameters.

The number of receive queues on the interface were set to

34
 ethtool -K ens2f1 rxhash on

 ethtool -K ens2f1 ntuple on

 ethtool -L ens2f1 combined 34

We used the i40e driver’s script, set_irq_affinity, to assign

the interrupts to the cores local to the NUMA node for the

interface

set_irq_affinity 1-17,37-53 ens2f1

We enabled symmetric RSS with a low entropy key for

our interface

ethtool -X ens2f1 hkey

6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6

D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D

:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:

5A:

6D:5A equal 34

Suricata was started in AF-PACKET mode and Suricata

configuration was modified to enable cpu-affinity for the

threads. The worker threads were pinned to the same cores

as the receive queues for the interface. This enabled

Suricata to read the packet from the L3 cache as much as

possible and improve performance. Also, cluster-type for

the interfaces was set to cluster_qm to bind Suricata to the

RSS queues.

af-packet:

 - interface: ens2f1

 threads: 17

 cluster-id: 99

 cluster-type: cluster_qm

 use-mmap: yes

 mmap-locked: yes

 tpacket-v3: yes

 ring-size: 300000

 block-size: 2097152

 - interface: ens2f1

 threads: 17

 cluster-id: 99

 cluster-type: cluster_qm

 use-mmap: yes

 mmap-locked: yes

 tpacket-v3: yes

ring-size: 300000

 block-size: 2097152

threading:

 set-cpu-affinity: yes

 cpu-affinity:

 - management-cpu-set:

 cpu: ["0", "36"]

 - worker-cpu-set:

 cpu: ["1-17", "37-53"]

 mode: "exclusive"

VI. TEST RESULTS OF TEST PHASE 1

With the above settings, we were able to process input

rates of 34 Gbps on single port of 40GbE card without any

drops at the NIC or Suricata. CPU utilization on the

Crystal Eye appliance was of the order of 80-95% across

all the 34 cores. Suricata statistics logs showed that all the

packets captured by Suricata were picked up by the engine

for analysis and there were no kernel drops observed in the

system.

VII. TEST PHASE 2 (DUAL NICS)

In the second phase of the testing, 60 Gbps traffic was

passed from Trex to two interfaces on separate NUMA

nodes on Crystal Eye. The interface configs, entropy keys

and receive queues were kept same as in Test Phase 1.

ethtool -L ens2f1 combined 34

ethtool -L ens6f1 combined 34

set_irq_affinity 1-17,37-53 ens2f1

set_irq_affinity 19-35,55-71 ens6f1

In order to maintain NUMA locality of the received

packets and minimize L3 cache misses, Suricata

configuration enabled cpu-affinity for the threads. The

worker threads were pinned to the cores matching the

receive queues for the interfaces. Also, cluster_type for the

interfaces was set to cluster_qm to bind Suricata to the

RSS.

af-packet:

 - interface: ens2f1

 threads: 17

 cluster-id: 99

 cluster-type: cluster_qm

 use-mmap: yes

 mmap-locked: yes

 tpacket-v3: yes

 ring-size: 300000

 block-size: 2097152

 - interface: ens6f1

 threads: 17

 cluster-id: 98

 cluster-type: cluster_qm

 defrag: yes

 use-mmap: yes

 mmap-locked: yes

 tpacket-v3: yes

 ring-size: 300000

 block-size: 2097152

 - interface: ens2f1

 threads: 17

 cluster-id: 99

cluster-type: cluster_qm

 defrag: yes

 use-mmap: yes

 mmap-locked: yes

 tpacket-v3: yes

 ring-size: 300000

 block-size: 2097152

 - interface: ens6f1

 threads: 17

 cluster-id: 98

 cluster-type: cluster_qm

 defrag: yes

 use-mmap: yes

 mmap-locked: yes

 tpacket-v3: yes

 ring-size: 300000

 block-size: 2097152

 cpu-affinity:

 - management-cpu-set:

 cpu: [0,18,36,54

 - worker-cpu-set:

 cpu: ["1-17", "19-35", "37-53", "55-71"]

 mode: "exclusive"

 prio:

 low: []

 medium: [0,18,36,54]

 high: ["1-17","19-35","37-53","55-71"]

 default: "high"

VIII. TEST RESULTS OF TEST PHASE 2

With the above settings, we were able to process input

rates of 60 Gbps on two 40GbE NICs in Crystal Eye

without any drops at the NIC or Suricata. CPU utilization

on the Crystal Eye appliance was of the order of 80-95%

across all the 68 cores processing Suricata worker threads.

Similar to test phase 1, Suricata statistics from the system

showed that all the packets captured by Suricata were

picked up by the engine for analysis and there were no

kernel drops observed in the system.

IX. CONCLUSION

The system and Suricata tunings described in this paper

tested Suricata’s capacity to process traffic at 60Gbps for a

high-speed network. Furthermore, the forwarding capacity

of the complete system with two receive and two transmit

interfaces was bound to data speed of 30 Gbps.

Considering the above test results, it shows that future

improvements in Suricata throughput can be achieved by

- Testing on a system with more sockets. This would

increase the number of NUMA nodes and more

NIC cards can be added to increase the overall

capacity.

- Increasing the number of cores in the system. This

would increase the number of Suricata worker

threads and hence the capacity.

Also, recent Suricata releases have an extensive support

for XDP. We did not use this feature in our test setup since

our traffic replay consisted of small flows. In case of

elephant flows, we believe that XDP will give us good

results as well. We look forward to testing it on our setups.

ACKNOWLEDGMENT

The work on which this paper reports is supported by

the management of Red Piranha Limited, Australia. We

thank Adam Bennett for permission to publish this

material.

.

REFERENCES

[1] Hu, Qinwen, Muhammad Rizwan Asghar, and Nevil Brownlee.

"Evaluating network intrusion detection systems for high-speed
networks." 2017 27th International Telecommunication Networks

and Applications Conference (ITNAC). IEEE, 2017.

[2] Lukaseder T, Fiedler J, Kargl F. Performance Evaluation in High-
Speed Networks by the Example of Intrusion Detection. arXiv

preprint arXiv:1805.11407. 2018 May 29.

[3] Shah SA, Issac B. Performance comparison of intrusion detection
systems and application of machine learning to Snort system.

Future Generation Computer Systems. 2018 Mar 1;80:157-70.

[4] Cherkaoui R, Zbakh M, Braeken A, Touhafi A. Performance
Analysis of Intrusion Detection Systems in Cloud-Based Systems.

InInternational Symposium on Ubiquitous Networking 2017 May 9

(pp. 206-213). Springer, Cham.
[5] Cherkaoui R, Zbakh M, Braeken A, Touhafi A. Performance

Analysis of Intrusion Detection Systems in Cloud-Based Systems.
InInternational Symposium on Ubiquitous Networking 2017 May 9

(pp. 206-213). Springer, Cham.

[6] Park W, Ahn S. Performance comparison and detection analysis in
snort and suricata environment. Wireless Personal

Communications. 2017 May 1;94(2):241-52.

[7] Zhan YR, Wang ZS. Deep packet inspection based on many-core
platform. journal of computer and communications. 2015 May

25;3(05):1.

[8] https://redpiranha.net/crystal-eye-utm-appliances.
[9] http://pevma.blogspot.com/2015/10/suricata-with-afpacket-

memory-of-it-all.html.

[10] https://github.com/pevma/SEPTun.

[11] https://github.com/pevma/SEPTun-Mark-II.

