

CRYSTAL EYE SERIES-80 SURICATA TESTING

2

Introduction

Red Piranha’s Crystal Eye UTM appliances are multi-core systems that enable multi-threaded

applications to use the underlying hardware for high performance. Multi-threading scales the

system by adding more threads for running different applications that inspect the incoming

traffic before transmitting it to/from the protected network.

Crystal Eye uses Suricata as its Intrusion Detection and Protection Engine. The IDPS solution

of Crystal Eye can be used in IDS, IPS or NSM mode. As the range of UTM products increase

in their capacity to handle higher traffic speeds, it becomes imperative to tune Suricata to

provide a lossless detection to the network.

Crystal Eye Series-80 is a high-end appliance that is suitable for telecoms or large IT needs.

This document provides details about Suricata tuning efforts for this appliance. This document

has been inspired by Septun Mark I and Septun Mark II from the OISF team.

Our special thanks to Peter Manev(@pevma) who was as keen with our testing as we were and

guided us throughout the course of this exercise. Special thanks also to Dylan Leahy, Victor

Julien and the team @ OISF & Red Piranha.

CRYSTAL EYE SERIES-80 SURICATA TESTING

3

Test Setup

Our test setup closely matches the one used in Septun Mark I/II to replicate the test conditions

and the new hardware configuration used in these tests is detailed below.

• 2 x dual port XL710 40GbE cards – 1 port of each card used

• 2 x Intel(R) Xeon(R) CPU E5-2697 v4 – 36 cores total, 72 threads with HT enabled

• 128GB RAM, 8 DIMMS, 4 per socket.

• OS: Ubuntu 18.04.2 LTS (Bionic Beaver), Kernel: 4.18.0-20-generic

• Latest Suricata (5.0.0 dev) from git

• Latest i40e driver from Intel (v2.9.21)

• 14350 signatures from Emerging Threats ruleset

Important Considerations

As per the Septun document, Suricata’s performance is dependent upon 4 major variables

• Suricata version

• Traffic type

• Rules used

• HW capability

This document details these variables along with the tuned configuration settings that we used

in our setup.

Most of the tunings in Septun were done to make sure that the packet is read from the L3 cache

to minimize the time required to fetch the data. Some of the important considerations in this

regard have been listed here

• Single port of each XL710 card was used. These cards come with dual ports where the

second port has been reserved for redundancy.

• NICs on different NUMA nodes were used. This is a dual socket system, with 2 NUMA

nodes. Interfaces were identified on the different NUMA nodes and used for testing.

lstopo is the linux utility which was used to fetch the information about the interface

association with the NUMA nodes.

From our setup:

lstopo

Machine (126GB total)
 NUMANode L#0 (P#0 63GB)
…

HostBridge L#0
 PCIBridge
 PCI 8086:1583

 Net L#0 "ens2f0"
 PCI 8086:1583

CRYSTAL EYE SERIES-80 SURICATA TESTING

4

 Net L#1 "ens2f1"
 PCIBridge

 PCI 8086:1583
 Net L#2 "ens4f0"

 PCI 8086:1583
 Net L#3 "ens4f1"
 …

 PCIBridge
 PCI 8086:1533
 Net L#6 "enp5s0"

 PCIBridge
 PCI 8086:1533

 Net L#7 "enp6s0"

NUMANode L#1 (P#1 63GB)

 HostBridge L#7
 PCIBridge
 PCI 8086:1589

 Net L#11 "ens1f0"
 PCI 8086:1589

 Net L#12 "ens1f1"
 PCI 8086:1589
 Net L#13 "ens1f2"

 PCI 8086:1589
 Net L#14 "ens1f3"
 PCIBridge

 PCI 8086:1583
 Net L#15 "ens5f0"

 PCI 8086:1583
 Net L#16 "ens5f1"
 PCIBridge

 PCI 8086:1583
 Net L#17 "ens6f0"
 PCI 8086:1583

 Net L#18 "ens6f1"

Thus, interfaces on NUMA0 are ens2f0, ens2f1, ens4f0, ens4f1, enp5s0, enp6s0.

Similarly, interfaces on NUMA1 are ens1f0, ens1f1, ens1f2, ens1f3, ens5f0, ens5f1,

ens6f0, ens6f1.

We used interfaces ens2f1 and ens6f1 for our testing.

CRYSTAL EYE SERIES-80 SURICATA TESTING

5

• Isolate all cores for Suricata from any tasks and only use dedicated threads for

housekeeping task. This is done to prevent any user tasks from being scheduled on these

threads.

In our setup, with 2 NUMA nodes, the CPU cores were distributed as below

lscpu
…

NUMA node0 CPU(s): 0-17,36-53
NUMA node1 CPU(s): 18-35,54-71

We identified 0,18,36 and 54 for housekeeping and isolated the remaining cores for

Suricata. This was done by modifying the grub configuration

cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-4.18.0-20-gener ic

root=UUID=61a72786-ba4f-11e8-bf06-4cedfb911a90 ro maybe-

ubiquity audit=0 processor.max_cstate=3

intel_idle.max_cstate=3 selinux=0 apparmor=0 mce=ignore_ce

isolcpus=1-17,19-35,37-53,55-71

• Symmetric hashing of the receive traffic (RSS) was used to evenly distribute the traffic

between all the queues. Suricata worker threads were pinned to the same cores.

We used the i40e driver script, set_irq_affinity, to define the receive and

transmit queues for the traffic. The configuration details are mentioned below.

• Suricata was run in workers mode and the worker threads were pinned to the cores

depending upon the NUMA locality as described in Suricata configs for different tests.

CRYSTAL EYE SERIES-80 SURICATA TESTING

6

• Memcap values in the Suricata config file were adjusted to handled high traffic load.

We adjusted these values keeping in mind the available memory and the memory

consumption of Suricata as described by Peter Manev in his blog [5].

• Buffers and interrupts were adjusted to minimize losses at the NIC and Suricata

Preparations

BIOS Settings

While most of the tests with default BIOS settings gave us expected results, we noticed that for

speeds higher than 50Gbps, BIOS tunings were needed. We followed the suggestions in Septun

Mark I for our motherboard and made the settings as below

• Disable ASPM

• Disable VT-d

• Disable SR-IOV (already disabled in our case)

• Disable hardware prefetcher

• Disable adjacent sector prefetcher

• Disable DCU stream prefetcher

Given our motherboard constraints with this test set up, we were not able to specifically disable

Node Interleaving and Enable IOAT. But statistics from our box suggested that node-

interleaving was not being used in our tests. We verified this by observing the interleave_hit

value in numastat output. Between multiple runs in the setup, this value remained constant.

Also, DDIO was enabled by default in our system.

Packages

Common libraries installed for our setup

apt-get -y install git build-essential autoconf automake \
libtool pkg-config libpcre3 libpcre3-dbg libpcre3-dev \
libpcap-dev libnet1-dev libyaml-0-2 libyaml-dev zlib1g \
zlib1g-dev libmagic-dev libcap-ng-dev libjansson-dev \
libjansson4 libnss3-dev libnspr4-dev libgeoip-dev libluajit-5.1-dev \
rustc cargo clang libelf-dev clang-6.0 libncurses5-dev gcc make git bc

libssl-dev build-essential autoconf automake clang-tools-6.0 \
libllvm6.0 llvm-6.0-tools bison flex tmux lshw python3-distutils \

python3-yaml libhyperscan-dev libmaxminddb-dev

• Hyperscan

Latest hyperscan (v5.1.1, as of writing this document) was installed from github as per the

instructions

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Hyperscan

• BPF

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Hyperscan

CRYSTAL EYE SERIES-80 SURICATA TESTING

7

cd /opt && \
git clone https://github.com/libbpf/libbpf && cd libbpf/src/ && \
make clean && make && \
make install && make install_headers && \
echo "/usr/lib64" > /etc/ld.so.conf.d/local.conf && \
ldconfig

• Latest Intel Drivers

mkdir -p /opt/i40e && \
cd /opt/i40e/ && \
wget

https://sourceforge.net/projects/e1000/files/i40e%20stable/2.7.29/i40e-

2.7.29.tar.gz && \
tar -zxf i40e-2.7.29.tar.gz && \
cd /opt/i40e/i40e-2.7.29/src && \
make clean && make && make install && \
cd ../../ && \
ls -lh i40e-2.7.29/scripts/set_irq_affinity

rmmod i40e && modprobe i40e

• Latest Ethtool

cd /opt/ && \
wget

https://mirrors.edge.kernel.org/pub/software/network/ethtool/ethtool-

4.19.tar.xz && \
tar -xf ethtool-4.19.tar.xz && \
cd ethtool-4.19 && \
./configure && make clean && make && make install && \
ls -lh /usr/local/sbin/ethtool

• Suricata

Latest Suricata from git (5.0.0-dev) was installed on the box for testing.

cd /opt && \
git clone https://github.com/OISF/suricata.git && cd suricata \
&& git clone https://github.com/OISF/libhtp.git -b 0.5.x && \
./autogen.sh && CC=clang-6.0 ./configure --prefix=/usr/ --

sysconfdir=/etc/ --localstatedir=/var/ \
--enable-geoip --enable-rust-strict \
--enable-luajit --enable-ebpf --enable-ebpf-build \
--enable-hyperscan && \
sudo make clean && sudo make -j && \
sudo make install-full && sudo ldconfig

cp ebpf/xdp_filter.bpf /etc/suricata/

• Trex

mkdir -p /opt/trex
cd /opt/trex
wget --no-cache http://trex-tgn.cisco.com/trex/release/latest
tar -xzvf latest

CRYSTAL EYE SERIES-80 SURICATA TESTING

8

Enable IP Forwarding

Make sure IP forwarding is enabled on the system

#sysctl net.ipv4.ip_forward

net.ipv4.ip_forward = 1

Disable IRQ Balance

systemctl stop irqbalance
systemctl disable irqbalance

Disable NIC offloading

Offloading was disabled for all the interfaces

ip link set ens2f1 promisc on arp off up
echo 1 > /proc/sys/net/ipv6/conf/ens2f1/disable_ipv6

for i in rx tx tso ufo gso gro lro tx nocache copy sg txvlan rxvlan; do

/sbin/ethtool -K <intf> $i off 2>&1 > /dev/null;
done

Enable Network Balancing

This was done for each test for all the interface participating in the traffic.

for proto in tcp4 udp4 tcp6 udp6; do
 /usr/local/sbin/ethtool -N <intf> rx-flow-hash $proto sdfn
done

Adjust NIC interrupts

Interrupt rates need to be properly adjusted so that they do not increase CPU utilization or

prevent the packets being dropped due to slow CPU. For our setup, the below configs worked

well

/usr/local/sbin/ethtool -C ens2f1 adaptive-rx off adaptive-tx off rx-usecs

150
/usr/local/sbin/ethtool -C ens6f1 adaptive-rx off adaptive-tx off rx-usecs

150

Adjust NIC ring descriptor size

Ring descriptor sizes have impact on the L3 cache miss ratio. Higher values can increase the

L3 cache miss, which would result in slower packet access. Lower values can lead to packet

drops, if CPU is not reading fast enough. For our setup and the interrupt values mentioned

above, below values worked for us.

/usr/local/sbin/ethtool -G ens2f1 rx 1024

CRYSTAL EYE SERIES-80 SURICATA TESTING

9

/usr/local/sbin/ethtool -G ens6f1 rx 1024

In one of our runs, L3 cache miss was in the range of 3% for 60Gbps traffic.

On NUMA0:
perf stat -e LLC-loads,LLC-load-misses,LLC-stores,LLC-prefetches -C 2 sleep 60

 Performance counter stats for 'CPU(s) 2':

 1,343,332,368 LLC-loads (66.67%)
 39,568,833 LLC-load-misses # 2.95% of all LL-cache hits (66.67%)
 167,477,300 LLC-stores (66.67%)
 <not supported> LLC-prefetches

 60.001256221 seconds time elapsed

On NUMA1:
perf stat -e LLC-loads,LLC-load-misses,LLC-stores,LLC-prefetches -C 20 sleep 60

 Performance counter stats for 'CPU(s) 20':

 1,319,813,342 LLC-loads (66.67%)
 38,714,606 LLC-load-misses # 2.93% of all LL-cache hits (66.67%)
 170,313,548 LLC-stores (66.66%)
 <not supported> LLC-prefetches

 60.001568549 seconds time elapsed

Disable pause frames

As per the recommendations in Septun Mark I, we disabled the pause frames on our

interfaces

/usr/local/sbin/ethtool -A ens2f1 rx off tx off
/usr/local/sbin/ethtool -A ens6f1 rx off tx off

Suricata Config

Common changes for all the tests made to the default suricata.yaml have been listed below.

Af-packet and cpu-affinity configs have been mentioned in the tests section.

• Disable line based logs

We should only enable the logs that are needed for our setup to minimize load on the CPU

for logging.

outputs:
 # a line based alerts log similar to Snort's fast.log
 - fast:
 enabled: no

• Set eve log filetype to ‘syslog’
- eve-log:
 enabled: yes
 filetype: syslog

• Disable all event types except alerts

CRYSTAL EYE SERIES-80 SURICATA TESTING

10

We were interested only in alerts for these tests, so we disabled all the other events.

• Application Layer configs
app-layer:
 protocols:
 tls:
 ja3-fingerprints: yes
 encrypt-handling: bypass

 dns:
 # memcaps. Globally and per flow/state.
 global-memcap: 4gb
 state-memcap: 1mb

 libhtp:
 default-config:
 personality: IDS

 # Can be specified in kb, mb, gb. Just a number indicates
 # it's in bytes.
 request-body-limit: 1mb #100kb
 response-body-limit: 1mb #100kb

• Increase max-pending-packets

To deal with high traffic, we set the max-pending-packets to maximum value.

max-pending-packets: 65500

• Change runmode to workers

runmode: workers

• Set default-packet-size

default-packet-size: 1574

• Disable unix socket

We did not need it for this testing. So we disabled it.

unix-command:
 enabled: no

• Adjust memcaps and timeout values (Note: Only modified parameters are mentioned

below)

Memcap values were adjusted taking into consideration the system memory size.

defrag:
 memcap: 1gb
 timeout: 10

flow:
 memcap: 18gb

CRYSTAL EYE SERIES-80 SURICATA TESTING

11

 hash-size: 256072 #16388608
 prealloc: 300000
 managers: 1 # default to one flow manager
 recyclers: 1 # default to one flow recycler thread

flow-timeouts:

 default:
 established: 60

 tcp:
 new: 30
 emergency-new: 1

 udp:
 established: 60

 icmp:
 established: 60

stream:
 memcap: 12gb
 checksum-validation: no # reject wrong csums
 prealloc-sessions: 200000
 bypass: yes
 reassembly:
 memcap: 24gb
 segment-prealloc: 200000

• Change performance settings

detect:
profile: high

• Enable auto mode for prefilter to use hyperscan for pattern matching.

prefilter:
 default: auto

Traffic Tests

Traffic testing for the setup was performed in two phases.

In the first phase, we tested with a single NIC card. We were able to achieve a maximum of

34.5 Gbps Suricata throughput (decode packets = kernel packets) in this case.

In the second phase, we tested with two NIC cards located on different NUMA nodes. With

proper tuning, we were able to achieve a maximum of 60Gbps Suricata throughput in this case.

For both the tests, rp_filter was enabled in our setup.

root@ce-80-1:~# sysctl net.ipv4.conf.default.rp_filter
net.ipv4.conf.default.rp_filter = 1
root@ce-80-1:~# sysctl net.ipv4.conf.all.rp_filter
net.ipv4.conf.all.rp_filter = 1

CRYSTAL EYE SERIES-80 SURICATA TESTING

12

Traffic profile:

One of the most important variables of Suricata performance is the type of traffic. While our

observation was that http traffic gives wire speeds for Suricata, this does not simulate an

enterprise traffic correctly. Thus, we chose our profile carefully to simulate the enterprise

network as much as possible.

We used Trex traffic generator to generate stateful traffic for our setup. Trex was running on a

system with similar configuration.

Latest Trex version from git (v2.56, as of writing this document) was used for these tests.

Trex uses profiles to replay pcap traffic in the system. Profiles contain information regarding

the client and server addresses to be used and connections per second (cps) to be initiated for

each pcap. Each pcap file should correspond to a single session. Our traffic profile can be

roughly described as:

HTTP/HTTPS traffic: 77.49%
RTP: 13.23%
Exchange: 4.31%
Citrix: 2.15%
SMTP: 1.08%
DNS: 1.08%
Oracle: 0.65%

Total: 100%

Test Phase 1: (Single NIC)

In this test, traffic was received on only one interface in the DUT.

Since this was the only active interface in the NUMA, we assigned all the rx queues to this

interface to enable hashing of the receive traffic.

ifconfig ens2f1 down
/usr/local/sbin/ethtool -L ens2f1 combined 34
/usr/local/sbin/ethtool -K ens2f1 rxhash on
/usr/local/sbin/ethtool -K ens2f1 ntuple on
ifconfig ens2f1 up
/opt/i40e/i40e-2.9.21/scripts/set_irq_affinity 1-17,37-53 ens2f1

/usr/local/sbin/ethtool -X ens2f1 hkey

6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:

5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:

6D:5A equal 34
ethtool -x ens2f1
ethtool -n ens2f1

Since we enabled receive hashing, we added cluster_qm for the cluster-type in our af-packet

interface configs. Also, we needed two separate configurations for the interface to map the

receive queues with the CPU threads mentioned in the affinity section.

Note: same interfaces will belong to the same cluster ie. cluster-id will be the same.

af-packet:

CRYSTAL EYE SERIES-80 SURICATA TESTING

13

 - interface: ens2f1
 threads: 17
 cluster-id: 99
 cluster-type: cluster_qm
 defrag: yes
 # xdp-cpu-redirect: ["2-18"]
 xdp-mode: driver
 xdp-filter-file: /etc/suricata/xdp_filter.bpf
 bypass: yes
 use-mmap: yes
 mmap-locked: yes
 tpacket-v3: yes
 ring-size: 300000
 block-size: 2097152 #1048576

 - interface: ens2f1
 threads: 17
 cluster-id: 99
 cluster-type: cluster_qm
 defrag: yes
 # xdp-cpu-redirect: ["2-18"]
 xdp-mode: driver
 xdp-filter-file: /etc/suricata/xdp_filter.bpf
 bypass: yes
 use-mmap: yes
 mmap-locked: yes
 tpacket-v3: yes
 ring-size: 300000
 block-size: 2097152 #1048576

Setting CPU affinity in Suricata

threading:
 set-cpu-affinity: yes

 cpu-affinity:
 - management-cpu-set:
 cpu: ["0", "36"] # include only these CPUs in affinity settings
 - worker-cpu-set:
 cpu: ["1-17", "37-53"]
 mode: "exclusive"
 # Use explicitely 3 threads and don't compute number by using
 # detect-thread-ratio variable:
 # threads: 3
 prio:
 low: []
 medium: ["0","36"]
 high: ["1-17","37-53"]
 default: "high"

Test results

With the above settings, we were able to process input rates of 34Gbps on single port of

40GbE card without any drops at the NIC or Suricata.

CPU utilization on DUT

CRYSTAL EYE SERIES-80 SURICATA TESTING

14

Suricata Stats

Test Phase 2: (dual NICs)

In this test, interfaces on separate NUMA nodes were picked up to test 60Gbps traffic. Both

the interfaces used 34 of the 36 cores for their packet reception and processing. The remaining

4 cores across the two nodes were used for housekeeping.

#Interface 1
ifconfig ens2f1 down
/usr/local/sbin/ethtool -L ens2f1 combined 34
/usr/local/sbin/ethtool -K ens2f1 rxhash on
/usr/local/sbin/ethtool -K ens2f1 ntuple on
ifconfig ens2f1 up
/opt/i40e/i40e-2.9.21/scripts/set_irq_affinity 1-17,37-53 ens2f1
/usr/local/sbin/ethtool -X ens2f1 hkey

6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:

5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:

6D:5A equal 34

#Interface 2
ifconfig ens6f1 down
/usr/local/sbin/ethtool -L ens6f1 combined 34
/usr/local/sbin/ethtool -K ens6f1 rxhash on
/usr/local/sbin/ethtool -K ens6f1 ntuple on
ifconfig ens6f1 up
/opt/i40e/i40e-2.9.21/scripts/set_irq_affinity 19-35,55-71 ens6f1
/usr/local/sbin/ethtool -X ens6f1 hkey

6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:

CRYSTAL EYE SERIES-80 SURICATA TESTING

15

5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:

6D:5A equal 34

Since we are using two different interfaces here, they both will belong to different clusters. In

our case, we have assigned cluster-id 99 to ens2f1 and cluster-id 98 to ens6f1.

af-packet:
 - interface: ens2f1
 threads: 17
 cluster-id: 99
 cluster-type: cluster_qm
 defrag: yes
 # xdp-cpu-redirect: ["2-18"]
 xdp-mode: driver
 xdp-filter-file: /etc/suricata/xdp_filter.bpf
 bypass: yes
 use-mmap: yes
 mmap-locked: yes
 tpacket-v3: yes
 ring-size: 300000
 block-size: 2097152 #1048576

 - interface: ens6f1
 threads: 17
 cluster-id: 98
 cluster-type: cluster_qm
 defrag: yes
 # xdp-cpu-redirect: ["2-18"]
 xdp-mode: driver
 xdp-filter-file: /etc/suricata/xdp_filter.bpf
 bypass: yes
 use-mmap: yes
 mmap-locked: yes
 tpacket-v3: yes
 ring-size: 300000
 block-size: 2097152 #1048576

 - interface: ens2f1
 threads: 17
 cluster-id: 99
 cluster-type: cluster_qm
 defrag: yes
 # xdp-cpu-redirect: ["2-18"]
 xdp-mode: driver
 xdp-filter-file: /etc/suricata/xdp_filter.bpf
 bypass: yes
 use-mmap: yes
 mmap-locked: yes
 tpacket-v3: yes
 ring-size: 300000
 block-size: 2097152 #1048576

 - interface: ens6f1
 threads: 17
 cluster-id: 98
 cluster-type: cluster_qm
 defrag: yes
 # xdp-cpu-redirect: ["2-18"]
 xdp-mode: driver
 xdp-filter-file: /etc/suricata/xdp_filter.bpf

CRYSTAL EYE SERIES-80 SURICATA TESTING

16

 bypass: yes
 use-mmap: yes
 mmap-locked: yes
 tpacket-v3: yes
 ring-size: 300000
 block-size: 2097152 #1048576

Also, to maintain NUMA locality, worker threads were bound to cores on different NUMA

nodes. This resulted in 4 different configurations for the interfaces in af-packet.

 cpu-affinity:
 - management-cpu-set:
 cpu: [0,18,36,54] # include only these CPUs in affinity settings
 - worker-cpu-set:
 cpu: ["1-17", "19-35", "37-53", "55-71"]
 mode: "exclusive"
 # Use explicitely 3 threads and don't compute number by using
 # detect-thread-ratio variable:
 # threads: 3
 prio:
 low: []
 medium: [0,18,36,54]
 high: ["1-17","19-35","37-53","55-71"]
 default: "high"

Test Results

DUT CPU Utilization

Suricata Stats

CRYSTAL EYE SERIES-80 SURICATA TESTING

17

Enhancements and Future Work

While the tests have given good results with 2 receive interfaces on different NUMA nodes

achieving over 60gbps, the forwarding capacity of the complete system with 2 WAN and 2

LAN interfaces was bound to 30Gbps. This can be enhanced by

• Increasing the number of sockets in the system (upgrading the motherboard). This

would increase the number of NUMA nodes and in turn the capacity of the system.

• Increasing the number of cores in the system (upgrading the processor)

Also, XDP did not come into picture in our setup since our traffic replay was mostly small

flows. In case of elephant flow, we believe that XDP will give us good results as well. We are

looking forward to testing it on our setups.

Future work will involve performing the same tests on other Crystal Eye firmware series

models. We also aim to do performance tests on AMD Ryzen hardware in the near future. We

will are also planning to test cluster Crystal Eye deployments running with packet brokers to

achieve optimal throughputs above 100Gbps and beyond.

Authored By

Nidhi V Singhai
Red Piranha Limited

COMPANY PROFILE
Red Piranha is an Australian enterprise that engineers and manufactures advanced security products for

Managed Service Providers (MSP) and enterprises to give them an advantage in fighting off cyber-crime,

intrusion attempts and in securing their data to meet modern compliance requirements. Our crown

jewel, Crystal Eye, is a unified threat management platform designed to be easy enough for enterprises to

use and powerful enough for MSPs to see as a major game-changer when compared against the top

products in the industry.

For more information, visit www.redpiranha.net

References

1. Septun Mark I

2. SEPTun Mark II

3. https://access.redhat.com/sites/default/files/attachments/20150325_network_performa

nce_tuning.pdf

4. https://www.intel.com/content/dam/www/public/us/en/documents/reference-

guides/xl710-x710-performance-tuning-linux-guide.pdf

5. http://pevma.blogspot.com/2015/10/suricata-with-afpacket-memory-of-it-all.html

6. https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-

http://www.redpiranha.net/
https://github.com/pevma/SEPTun
https://github.com/pevma/SEPTun-Mark-II
https://access.redhat.com/sites/default/files/attachments/20150325_network_performance_tuning.pdf
https://access.redhat.com/sites/default/files/attachments/20150325_network_performance_tuning.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/xl710-x710-performance-tuning-linux-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/xl710-x710-performance-tuning-linux-guide.pdf
http://pevma.blogspot.com/2015/10/suricata-with-afpacket-memory-of-it-all.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-memory-configuring-huge-pages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-memory-configuring-huge-pages

CRYSTAL EYE SERIES-80 SURICATA TESTING

18

red_hat_enterprise_linux-performance_tuning_guide-memory-configuring-huge-

pages

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-memory-configuring-huge-pages
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-memory-configuring-huge-pages

	Introduction
	Test Setup
	Important Considerations
	Preparations
	BIOS Settings
	Packages
	Enable IP Forwarding
	Disable IRQ Balance
	Disable NIC offloading
	Enable Network Balancing
	Adjust NIC interrupts
	Adjust NIC ring descriptor size
	Disable pause frames
	Suricata Config

	Traffic Tests
	Traffic profile:
	Test Phase 1: (Single NIC)
	Test results

	Test Phase 2: (dual NICs)
	Test Results

	Enhancements and Future Work
	Red Piranha is an Australian enterprise that engineers and manufactures advanced security products for Managed Service Providers (MSP) and enterprises to give them an advantage in fighting off cyber-crime, intrusion attempts and in securing their data...
	For more information, visit www.redpiranha.net

	References

